# Improvement of Vehicle Crash Compatibility through the Development of Crash Test Procedures

**VC-COMPAT** 

by
M J Edwards
17th September 2002



## **Duration and Cost**

 3 year duration, expected start date 1st November

- Total cost 5.8 Meuros
  - Car 3.8 Meuros, truck 2 Meuros
- EC funding 3 Meuros
  - Car 2 Meuros, truck 1 Meuros



## **Objectives - Car to Car Impact**

- To develop draft test procedures and performance criteria outlines to assess and control car frontal structures for frontal impact compatibility
- To ensure that the number of additional test procedures is a minimum to keep the test burden on industry to a minimum
- To develop a framework for a crash compatibility rating system
- To provide general recommendations for the design of a compatible car
- To provide an indication of the costs and benefits of improved compatibility



## **Objectives - Car to Truck Impact**

- To develop test procedures and performance standards for (energy absorbing) (front) underrun protection systems for trucks
- To define criteria for energy absorbing front underrun protection systems for trucks
- To provide guidelines for improvement of existing legislation on rear underrun protection
- To provide an indication of the benefits and costs of (energy absorbing) front and rear underrun protection systems for trucks



## **Consortium**

- Car to car impact
  - TRL (lead), TNO, BASt, UTAC, CHUT, Fiat

- Car to truck impact
  - TRL, TNO(lead), BASt, UPM, CIC, DC, GDV, VGT, Scania, DAF



#### **Project Workplan**





# **WP1 - Structural Analysis**

- Objective
  - To collect vehicle structural data and construct a database to provide information about vehicle geometric incompatibility
- Participants
  - UTAC



## **WP2 - Cost Benefit Analysis**

#### Objective

 To determine the benefits and costs of improved compatibility for car frontal impact.

#### Participants

BASt (leader), CHUT, TRL, UTAC, Fiat



# WP3 - Crash Testing

#### Objective

 To perform crash tests and associated analyses to continue the development and perform initial validation of the 4 proposed test procedure outlines to improve car frontal impact compatibility

#### Participants

 BASt, CHUT, Fiat, TNO, TRL (leader), UTAC



# **WP3 - Crash Testing**

| <u>Partner</u> | Test Units | EuroNCAP LCW |
|----------------|------------|--------------|
| BAST           | 10         | 5            |
| CHUT           | 2          | 0            |
| FIAT           | 5          | 0            |
| TNO            | 2          | 10           |
| TRL            | 12         | 6(**)        |
| UTAC           | 12         | 5            |
|                |            |              |
| TOTAL          | 43         | 26           |



# **WP4 - Modelling**

#### Objective

 To provide modelling support for the development and initial validation of the crash test procedures and cost benefit analysis for car to car impact

- Participants
  - CHUT, TNO(leader), TRL, UTAC



# **WP5 - Synthesis of Test Procedures**

#### Objective

 To determine test procedure strategy for car to car frontal impact, collate results from other work packages and write draft test procedures

#### Participants

 BASt, CHUT, Fiat, TNO, TRL(leader), UTAC



## **WP10 - Dissemination**

#### Objective

 To facilitate the dissemination of results of the research to stakeholders in vehicle safety design and obtain feedback to ensure that the test procedures proposed are acceptable

#### Participants

 BASt, CHUT(leader), Fiat, TNO, TRL, UTAC



#### **Timescales**





## Requested Role of EEVC WG15

- Steering group for technical issues
  - Expert advice, especially for determining final suite of test procedures
  - Link to industry
- Initial tasks envisaged include:
  - Compile list of tasks to do / questions to answer, to complete development and initial validation of candidate test procedures
  - Compile crash test matrix for above
  - Determine modelling work for above
  - Provide guidance for cost benefit analysis



## **Full Width Deformable Barrier Test**

- Assessment protocol
  - Complete phase 1 development, includes setting suggested performance limits
  - Phase 2 development
- Validation
  - Proof of principle validation (phase 1)
  - Check that barrier design is acceptable,
     Are structures that are set back correctly assessed?
  - Initial validation (phase 2)
  - Are modified cars correctly assessed
- Further Developments ?



## **PDB Test**

- Assessment protocol
  - Complete phase 1 development of assessment protocol, including suggested performance limits
  - Phase 2 development
- Validation
  - Proof of principle validation (phase 1)
  - Acceptability of barrier deformation measurement?
  - Initial validation (phase 2)
  - Are modified cars correctly assessed?
- Further Developments?



## 64 km/h Frontal Stiffness Test

- Assessment protocol
  - Development of assessment protocol for measuring LCW peak force and setting suggested performance limits
  - Phase 2
- Validation
  - Proof of principle (phase 1)
  - Is peak force an adequate measure to control stiffness?
  - Should vertical force distribution and / or average height of force be controlled in this test?
  - Initial validation (phase 2)
- Further Developments?



## 80 km/h Compartment Strength Test

- Assessment protocol
  - Develop assessment protocol and performance limits
  - Is a compartment stability criterion necessary?
  - Develop criteria to measure end of crash force
  - Phase 2
- Validation
  - Proof of principle
  - Is this test appropriate and acceptable to assess compartment strength, how sensitive is the test to variations in load path load sharing?
  - Initial validation (phase 2)
- Further Developments?

